
1.  Introduction
Relying on sea ice as a platform for growth, Antarctic ice algae are adapted to one of the most dynamic and 
extreme ecosystems on Earth. Living within or at the bottom of sea ice, ice algae often contend with confined, 
cold, and highly saline growing spaces. Depending on the history and conditions of the sea ice, algae can grow 
within the bottom ice, in strands attached to the bottom ice, in internal brine pockets and channels, and near the 
snow-ice surface, often after surface flooding caused by a heavy snow cover (a “slush” layer; Arrigo, 2017). Ice 
algae must make use of extremely low light levels as the Antarctic emerges from polar night and because the 
overlying snow and sea ice are strong attenuators of light. The sea ice itself is strikingly seasonal, as the Antarc-
tic retains only a small fraction of its sea ice through the summer: 2–3 million km 2 largely concentrated in the 
Weddell Sea and secondarily in the Bellingshausen and Amundsen Seas (Fetterer et al., 2017). 15–17 million km 2 
of new ice is formed each year.

The response of Antarctic sea ice to climate patterns during the satellite era has been inconsistent. For one, 
the Antarctic is affected by strong climate oscillations including the Southern Annular Mode (SAM) and the 
Southern Oscillation, which result in high interannual variability in the sea ice environment and challenge our 
ability to distinguish long-term climate trends (Eayrs et al., 2021). Using sea ice extent as an example, during 
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Plain Language Summary  Sea ice algae are single-celled photosynthetic organisms that grow 
within or at the bottom of sea ice. They tend to bloom early in the spring each year before other carbon fixers 
and are therefore an important food source for small marine animals. We examined how ice algae responded 
to spatial and temporal changes in the Antarctic environment during 2004–2019, a period that featured large 
swings in the amount of area covered by sea ice. We paired satellite data, which can measure where sea ice 
is and the depth of the snow on top of the ice, with other atmospheric data (e.g., incoming sunlight and air 
temperature) from models and observations to estimate where and when sea ice was potential algal habitat. 
There were some increases in habitable sea ice, but more importantly, we found that the spatial distribution 
of habitat was very patchy. This spatial unevenness suggests that whether or not sea ice is habitable is highly 
affected by relatively small changes in the environment and that ice algae may be quite sensitive to future 
climate changes.
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1979–2014, annual mean ice extent increased at a rate of 0.0224 million km 2 year −1, reaching a record high 
in 2014 (Parkinson, 2019). However, 2016 marked the beginning of a precipitous reduction in sea ice, with a 
2.1 million km 2 decrease in annual mean extent over three years—the equivalent of 30 years of sea ice loss in the 
Arctic (Eayrs et al., 2021; Parkinson, 2019). Although sea ice extent appeared to recover to climatological levels 
by summer 2020, the Antarctic sea ice extent reached a record low in summer 2022 (1.9 million km 2; Raphael & 
Handcock, 2022; Wang et al., 2022) and prompted suggestions that the Antarctic is falling into a new regime or 
state (Raphael & Handcock, 2022).

These recent and severe fluctuations in the sea ice environment emphasize the importance of estimating the 
current state of Antarctic ice algae and their response to recent swings in sea ice conditions. Ice algae are esti-
mated to contribute only 1% of annual primary production in the Southern Ocean south of 50°S, but contrib-
ute a higher proportion of production in the early season (4% in November) and in the sea ice zone (2%–24% 
annually; reviewed in Arrigo, 2017). As a result of both the timing and location of ice algal blooms, they serve 
as  an important food source for zooplankton and ice-associated grazers. Short-term fatty acid analyses found 
that  an average of 40%–60% of carbon in seven species of Antarctic zooplankton in August–October had ice algal 
origins (Kohlbach et al., 2018). The “keystone” species of Antarctic krill similarly features up to 56% and 88% 
ice algal-derived carbon in adults and juveniles, respectively (Kohlbach et al., 2017). Fatty acids that integrate 
over a longer period show less reliance on ice algae as the season progresses (Kohlbach et al., 2018, 2017), as 
most grazers have plastic feeding styles that can switch to pelagic food sources. Similar seasonal patterns are seen 
in markers in Antarctic seabirds and seals (Goutte et al., 2014). Overall, ice algae are a key overwintering and 
spring food source for zooplankton before ice retreat and phytoplankton blooms. They may also serve to seed 
phytoplankton blooms, supply polyunsaturated fatty acids and ultraviolet radiation-absorbing compounds to other 
marine organisms, and/or contribute to the carbon flux to the benthos (reviewed in Arrigo & Thomas, 2004).

To investigate the potential distributions of these important primary producers in the ice-covered Southern 
Ocean, we quantified the extent and duration of Antarctic ice algal habitat over the 2004–2019 period. Using 
remote sensing and reanalysis data, an idealized thermodynamic ice growth model, and a radiative transfer 
model, we defined sea ice as being habitable when enough light is transmitted to the bottom ice in a given day 
to support algal growth in spring. Although the interior and upper sea ice (e.g., slush layers) can also serve as 
habitat for ice algae, we focused on the bottom ice where ∼80% of primary production is concentrated (Saenz & 
Arrigo, 2014)  and where it is easier to constrain habitable conditions. We related the interannual and the large- 
and small-scale spatial variability in potential habitat to environmental variables in order to illuminate the major 
controls on the extent and duration of Antarctic ice algal habitat.

2.  Methods
1Antarctic ice algal habitat was determined in a method similar to Lim et al. (2022). Briefly, light transmission 
to the bottom ice algal layer (0.05 m, Table 1) was calculated using two spectral radiative transfer models: a 
cloud-corrected atmospheric model (Arrigo et al., 1998; Dobson & Smith, 1988; Gregg & Carder, 1990) and one 
through the snow and ice layers (Arrigo et al., 1991). Light absorption by ice algae in the surface and internal 
ice was neglected. For each location, net chlorophyll-a (Chla)-specific photosynthetic rates for ice algae were 
calculated every 3 hr based on the transmitted photosynthetically active radiation (PAR; 400–700 nm) and then 
integrated over the course of 1 day. If this net photosynthetic rate (corrected for respiration) was >0 g C g −1 
Chla for the day, then the ice was considered potential habitat for ice algae, unless ice at that grid cell had already 
started melting that year.

2.1.  Sea Ice Thickness Model

A key modification of the method described in Lim et al.  (2022) involves the determination of ice thickness 
(Figure 1a). In Lim et al. (2022), sea ice thickness was estimated from ice age, taking advantage of the long 
satellite record of ice age in the Arctic Ocean. Given the absence of an equivalent ice age data set for the 
Antarctic—which again has mostly first-year ice (Fetterer et al., 2017)—vertical sea ice growth was estimated 
thermodynamically by balancing the heat flux out of the ice to the ocean and atmosphere with the heat released 
by freezing ice and accounting for sea ice motion. Our model produces sea ice thickness at the same scale, 
25 km, obtained by passive microwave observations of sea ice, relying on a combination of forcing data sets 
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(Section 2.3) and processes at different temporal and spatial scales: daily snow depth (Figure 1b), 2 m air temper-
atures every 6 hr (Figure 1c), daily sea ice concentrations, and daily sea ice motion. Due to this combination of 
processes, we consider the ice growth model somewhat specialized for estimating Antarctic sea ice thickness 
at the 25 km scale and for the ensuing ice algal habitat assessment. Other estimates, such as satellite altimetry, 
earth system models, or data-assimilating models, may be better suited for different research questions regarding 
Antarctic sea ice.

2.1.1.  Thermodynamic Ice Growth and Ice Motion

We calculated daily sea ice thickness from thermodynamic growth and ice motion. The net conductive heat flux 
out of the ice was assumed to be fully balanced by the release of latent heat, Li (J g −1), during freezing (Petrich 
& Eicken, 2017):

𝜌𝜌𝑖𝑖𝐿𝐿𝑖𝑖

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐹𝐹𝑐𝑐 − 𝐹𝐹𝑤𝑤.� (1)

The left side of the equation represents sea ice growth via freezing, where ρi is the bulk density of the ice (g 
m −3), H is the ice thickness (m), t is time (s), and the right side of the equation represents the difference in the 
conductive heat fluxes (W m −2) between the ice and the atmosphere, Fc, and between the ice and the ocean, Fw.

Because Antarctic sea ice usually has a layer of snow, we treated the ice as two layers (Behrendt et al., 2015; 
Petrich & Eicken, 2017):

𝐹𝐹𝑐𝑐 =
𝑇𝑇𝑤𝑤 − 𝑇𝑇0

𝐻𝐻

𝜆𝜆𝑖𝑖
+

ℎ

𝜆𝜆𝑠𝑠

� (2)

where Tw is the water temperature set to a constant 271.35 K (−1.8°C), T0 is the surface snow temperature, h is 
the snow depth (m), λi is the thermal conductivity of ice (W m −1 K −1), and λs is the thermal conductivity of snow 
(W m −1 K −1).

The heat flux between the snow surface and the atmosphere, Fa (W m −2), was linearly approximated as 
Fa = k(T0 − Ta) (Leppäranta, 1993) in order to use the 2 m air temperature Ta, instead of T0, which is unknown. 
k is an effective heat transfer coefficient that approximates both turbulent and net longwave radiative fluxes 
(W m −2  K −1). Its value depends on various atmospheric conditions (wind speed, snow insulation, radiation, 

Parameter Standard run value Units Reference

ρi 920,000 g m −3 Behrendt et al. (2015)

Fw 5.02 W m −2 Arrigo et al. (1993)

Li 334 J g −1 Behrendt et al. (2015)

λi 2.2 W m −1 K −1 Lei et al. (2010)

λs 0.2 W m −1 K −1 Behrendt et al. (2015) and 
Pringle et al. (2007)

k 60 W m −2 K −1 Behrendt et al. (2015)

𝐴𝐴 𝐴𝐴 ∗

max
  0.64 g C g −1 Chla h −1 See Section 2.2

α* 0.062 g C g −1 Chla h −1 [μmol photons m −2 s −1] −1 See Section 2.2

R* 0.083 g C g −1 Chla h −1 See Section 2.2

Scattering layer thickness 0.30 m Perovich (2002)

Kd dry snow 22.33 a m −1 Perovich et al. (1986)

Kd scattering ice 5.35 a m −1 Perovich et al. (1986)

Kd interior ice 1.68 a m −1 Perovich et al. (1986)

Algal layer location 0.05 b m van Leeuwe et al. (2018)

 aDiffuse attenuation coefficients (Kd) are spectral; here we report the mean for 400–700 nm.  bMeasured from the ice-water interface at the bottom of the sea ice.

Table 1 
Ice Growth Model and Algal Habitat Assessment Parameters

 21699291, 2023, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JC

020055 by Stanford U
niversity, W

iley O
nline L

ibrary on [19/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Oceans

LIM ET AL.

10.1029/2023JC020055

4 of 18

Figure 1.  Examples of ice algal habitat assessment inputs and outputs for a typical year (2005): (a) sea ice thickness, (b) snow depth, (c) air temperature, (d) melt date 
as day of the year (DOY) in 2005, which can be greater than 365 because melt is allowed through 31 January 2006, (e) downwelling incident photosynthetically active 
radiation (PAR), (f) date of ice advance, and (g) ice algal normalized habitat-days. (a–c) and (e) are averaged June–January, while (d, f, and g) are annual metrics. (h) 
shows latitude and labels the sectors used in this analysis, where BA is Bellingshausen-Amundsen.
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humidity, evaporation, and atmospheric stability) but here we use a constant (Table  1). Then assuming that 
Fa = Fc (Leppäranta, 1993), Equation 2 becomes:

𝐹𝐹𝑐𝑐 =
𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑎𝑎

1

𝑘𝑘
+

𝐻𝐻

𝜆𝜆𝑖𝑖
+

ℎ

𝜆𝜆𝑠𝑠

.� (3)

Combining Equations 1 and 3 and solving for the rate of change of sea ice thickness, we used:

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=

1

𝜌𝜌𝑖𝑖𝐿𝐿𝑖𝑖

⎛
⎜
⎜
⎝

𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑎𝑎

1

𝑘𝑘
+

𝐻𝐻

𝜆𝜆𝑖𝑖
+

ℎ

𝜆𝜆𝑠𝑠

− 𝐹𝐹𝑤𝑤

⎞
⎟
⎟
⎠

� (4)

every 6 hr to grow the sea ice at each grid cell.

Fw most often describes the heat flux from the warmer ocean to the colder ice, as the seawater below the ice either 
retains heat from the mixed layer in summer or receives heat from deeper waters (Petrich & Eicken, 2017). Nega-
tive values of Fw are sometimes observed in nearshore locations such as McMurdo Sound when seawater from 
ice-shelf cavities rises to the surface and experiences pressure-induced supercooling (Langhorne et al., 2015). Fw 
is highly spatially and temporally variable, with typical Antarctic values in the 0–20 W m −2 range but reaching 
hundreds of W m −2 during short, extreme events (Ackley et al., 2015; Heil et al., 1996; McPhee et al., 1996, 1999; 
Wilson et al., 2019). In our idealized model, Fw was held constant in the absence of a circumpolar data set for 
Fw and in lieu of more complicated parameterizations (e.g., McPhee, 1992; Wilson et al., 2019). All parameter 
values used for ice growth and for the ice algal habitat analysis are listed in Table 1.

At the beginning of each day, the sea ice was moved according to the ice motion vectors, and instances of diver-
gence or convergence were reconciled based on the sea ice concentration. At time t, the sea ice concentration 
that can be explained in a given grid cell by ice motion, 𝐴𝐴 𝐴𝐴𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , was a combination of the ice from the previous 
day, ct−1; the ice that has moved in from neighboring grid cells, cin; and the ice that has exited the grid cell, cout:

𝑐𝑐𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑐𝑐𝑡𝑡−1 + 𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜.� (5)

All of the values above are expressed in terms of sea ice concentration (0–100%).

𝐴𝐴 𝐴𝐴𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 was compared to the sea ice concentration measured by passive microwave remote sensing, ct, as the “true” 
value. When 𝐴𝐴 𝐴𝐴𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑐𝑐𝑡𝑡 , ice converged at the grid cell. The ice thickness Ht was then an average of Ht−1 of the 
contributing grid cells, weighted by their relative contributions to the sea ice concentration. Note that the weighted 
average in convergent cases means that the model is not volume-conserving. When 𝐴𝐴 𝐴𝐴𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑐𝑐𝑡𝑡 , ice diverged from the 
grid cell. New ice was added to the grid cell at concentration 𝐴𝐴 𝐴𝐴𝑡𝑡 − 𝑐𝑐𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and given a thickness of 0.20 m (Saenz & 
Arrigo, 2014). Ht was calculated via weighted average, as in the convergent case, but with the addition of the new ice.

Because satellite-based sea ice concentrations were used to determine cases of convergence or divergence, the 
modeled sea ice cover always matched remotely sensed sea ice extent, timing, and distribution, including the 
formation of polynyas. The bottom ice melt date was set at each grid cell as the day after maximum ice thickness 
was reached (up through 31 January), at which point it was assumed that the algae slough off the bottom of the 
ice (Figure 1d).

2.1.2.  Ice Thickness Initialization

Sea ice thickness was initialized on the date of the 2003 summer minimum (17 February) using an approximation 
modified slightly from Arrigo et al. (1998) that relates ice thickness and sea ice concentration. This is the first 
summer minimum for which estimates of snow depth from the chosen remote sensing product (Section 2.3) are 
available. Grid cells with ice concentrations above 80% had 1.28 m ice, grid cells with concentrations of 15% 
had 0.53 m ice, and concentrations in between were linearly interpolated. Ice concentrations below 15% were 
initialized as having no ice, as 15% is a commonly used threshold for measures of sea ice extent and was used as 
such in this study. Sea ice growth was spun up for 1 year (i.e., our first year of habitat analysis is 2004) and run 
continuously through the end of the time series.

2.1.3.  Ice Thickness Validation

Sea ice growth was validated with in situ ice thickness measurements from the Antarctic Sea Ice Processes 
and Climate (ASPeCt) program (Worby et al., 2008). We were not able to exactly match the dates of ASPeCt 
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measurements, which span 1980–2005, and our modeled ice thicknesses, which span 2004–2019. We did match 
the locations and the day of the year with our model results for a total of 20,585 validation points from ASPeCt 
matched with 265,177 points from our model. For further analysis, we divided the months into four seasons: austral 
summer (December–February), fall (March–May), winter (June–August), and spring (September–November).

2.2.  Ice Algal Habitat Assessment Parameters

For the ice algal habitat assessment, photophysiology parameters were adjusted to fit Antarctic ice algae—
specifically, the maximum photosynthetic rate, 𝐴𝐴 𝐴𝐴 ∗

max
 ; the slope relating irradiance and photosynthetic rate 

before light saturation, α*; and respiration, R* (Table 1). Parameters were tuned slightly so that a standard run 
produced average spring production rates around 50 mg C m −2 d −1 from a median integrated Chla of 43 mg m −2 
(Arrigo, 2017) and a C:Chla ratio of 35. Tuning resulted in standard run values of 𝐴𝐴 𝐴𝐴 ∗

max
  = 0.64 g C g −1 Chla 

m −2 h −1 and α* = 0.062 g C g −1 Chla h −1 [μmol photons m −2 s −1] −1, which are above the average values—but 
well within the overall ranges—reported in van Leeuwe et al. (2018) for algae in Antarctic pack ice. R* was set 
to 13% of 𝐴𝐴 𝐴𝐴 ∗

max
 to match the mean ratio of R* to 𝐴𝐴 𝐴𝐴 ∗

max
 in Trenerry et al. (2002).

2.3.  Input Data

For input data, we used a combination of reanalysis and remote sensing data. Notably, we used a microwave 
radio-metry product recently developed by Shen et al. (2022) that estimates snow depths on Antarctic sea ice, 
which have historically been difficult to measure. Their algorithm incorporates lower frequency channels from 
the Advanced Microwave Scanning Radiometer for EOS and its successor (AMSR-E and AMSR-2) to improve 
snow depth estimation from June 2002 through May 2020 (daily, 25 km; Shen & Ke, 2021) when compared to 
the algorithms of Comiso et al.  (2003) and Markus and Cavalieri  (1998). Occasional days (<15 days total in 
our time series; never more than 7 days in a row) were missing from the snow depth data product; we linearly 
interpolated between the neighboring dates that had snow depth data. There were also some spatial gaps/missing 
grid cells in the snow depth data, presumably due to clouds or other remote sensing limitations. We similarly 
linearly interpolated between dates up to 7 days apart, and any remaining holes were filled with the value from 
the nearest-neighbor grid cell on the same date.

All other forcing data, describing atmospheric and sea ice conditions, did not require interpolation: (a) atmos-
pheric conditions from the National Centers for Environmental Prediction/National Center for Atmospheric 
Research (NCEP/NCAR) Reanalysis Project 1 (4× daily, 2.5° resolution; Kalnay et al., 1996) and the National 
Aeronautics and Space Administration Ozone Record (daily, 1° resolution; https://ozonewatch.gsfc.nasa.gov), 
(b) sea ice concentrations from the National Oceanic and Atmospheric Administration/National Snow and Ice 
Data Center (NOAA/NSIDC) Climate Data Record of passive microwave sea ice concentration (Version 4, daily, 
25 km resolution; Meier et al., 2021), and (c) the Polar Pathfinder sea ice motion vectors (Version 4, daily, 25 km 
resolution; Tschudi et al., 2019). All data were regridded to the 25 km Equal-Area Scalable Earth (EASE)-Grid 
South used for the sea ice motion vectors. Aside from filling missing days of snow depth data, input data were not 
temporally interpolated. That is, most forcing data were prescribed daily, except for NCEP/NCAR atmospheric 
conditions (every 6 hr, defining the ice model time resolution) and calculated sun angle (hourly, allowing habitat 
estimates every 3 hr).

2.4.  Analysis and Statistics

The habitat assessment is expressed as the proportion of each 25 km grid cell that was habitable for ice algae each 
day during the potential growing season, defined as June–January to capture late winter, spring, and early summer 
blooms. For reference, monthly examples from 2005 to 2006 are provided in Figure S1 in Supporting Infor-
mation S1. Specifically, potential habitat in a grid cell was quantified as a proportion because snow was given 
a log-normal distribution within each grid cell to account for its high spatial variability (Arrigo et al., 1998). 
Because each grid cell had a daily proportion of habitat that ranged from 0/9 to 9/9, we report the metric of 
habitat-days (km 2 d) that is defined in Lim et al. (2022) to integrate spatially and temporally over the entire ice 
season. We also use the metric of normalized habitat-days (d), which can be thought of as the spatially averaged 
duration of ice algal habitat, to describe ice algal habitat for each grid cell, for the entire Antarctic, or when 
divided into latitudinal bands or geographic sectors (Figures 1g and 1h; Arrigo et al., 2008). Text S1 in Support-
ing Information S1 contains a more detailed explanation of the habitat-days metric.
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Aside from melt date and the date of ice advance, which are singular metrics for each grid cell each year, we often 
report environmental variables as means over the ice algal growing season (June–January). The first date on or 
after 15 February when the sea ice concentration in a grid cell is ≥15% is considered the date of ice advance in 
order to establish an annual metric, even though the ice edge can advance and retreat multiple times from the 
same grid cell during freeze-up. Parts of the EASE grid extend up to 37°S, so the data were first filtered to only 
include grid cells that have sea ice at some point during the growing season. For each grid cell, ice thicknesses 
and snow depths were then averaged for days with ice cover in a particular grid cell, while daylength, incident 
light, and air temperature were averaged for all days from June through January. The intent was to, as much as 
possible, separate the changes in sea ice presence/absence and timing from inherent changes in the other factors.

Trends in environmental data and in habitat-days over 16  years were estimated using the nonparametric 
Mann-Kendall Trend test, with modifications to account for possible serial correlation, and the accompany-
ing Theil-Sen slope, as implemented in the pymannkendall package in Python (Hussain & Mahmud,  2019; 
Kendall, 1975; Mann, 1945; Sen, 1968; Yue & Wang, 2004). An alpha level of 0.05 was used for all statistical 
tests. Normalized habitat-days were tested for correlations using simple linear regressions (ordinary least squares) 
in Python's SciPy package (Virtanen et al., 2020) with several large climate modes: the SAM (Mo, 2000), the 
Southern Oscillation Index (SOI) from NOAA National Centers for Environmental Information (https://www.
ncei.noaa.gov/access/monitoring/enso/soi), the Amundsen Sea Low (ASL; Hosking et al., 2016; https://clima-
tedataguide.ucar.edu/climate-data/amundsen-sea-low-indices), and the Indian Ocean Dipole (IOD; Saji & 
Yamagata,  2003; https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI). Correlations were tested with each index 
averaged over a year (January–December), the ice algal growing season (June–January), austral summer, fall, 
winter, and spring (seasons defined in Section 2.1.3). The various time frames were included to test potential lag 
effects and dampening periods within a year, while annual indices were also tested with offsets of up to 5 years 
in case of longer lag effects.

To investigate the impact of environmental forcings on Antarctic ice algal habitat, backward selection multiple 
linear regressions were run to explain normalized habitat-days between sectors (n = 16 years × 5 sectors) and 
individual grid cells (n ≈ 16 years × 35,000 grid cells for one combined regression and n ≈ 35,000 grid cells for 
regressions of individual years). Depending on the specific regression, explanatory variables were a subset of 
the mean daylength, mean incident light (Figure 1e), mean snow depth, mean ice thickness, date of ice advance 
(Figure  1f), melt date, SAM Index, and SOI. We report the results for regression analyses run using annual 
averages of the SAM index and SOI, but regressions run with seasonal means were comparable. The relative 
contribution of each explanatory variable was estimated using the lmg approach implemented in the relaimpo 
package in R (Grömping, 2006; Lindeman et al., 1980). Further descriptions of statistical analyses are in Text S2 
in Supporting Information S1.

2.5.  Uncertainty Calculation

Many characteristics of the snow-ice ecosystem are challenging to estimate or measure due to the complexity 
of the system and to the difficulties of working in the Antarctic. Thus, there is inherent error and uncertainty 
associated with the input data that force our ice algal habitat assessment. Of those, snow depth likely adds the 
most uncertainty to our habitat estimates, given both the limitations of snow depth estimation and validation 
(reviewed in part in Webster et al., 2018) and the high light attenuation by snow (Table 1; Perovich et al., 1986). 
The uncertainty in habitat-days for each year was calculated by uniformly adding or subtracting 0.14 m of snow 
to the Shen et al. (2022) snow depth estimate across the Antarctic, before application of the log-normal distri-
bution. In cases when subtracting 0.14 m of snow resulted in a value ≤0 m, the snow depth was set to 0.001 m 
because changing from a snow-covered surface to bare ice would alter the specular reflection. The habitat-days 
estimates from the +0.14 m of snow (high snow, low habitat) and −0.14 m of snow (low snow, high habitat) runs 
are reported as ranges in parentheses following results from the control run. These ranges are conservative and 
represent extreme scenarios, as the Shen et al. (2022) snow depth estimates are unlikely to be uniformly high or 
uniformly low across the Antarctic.

2.6.  Sensitivity Analyses

Sensitivity analyses were performed to determine how parameter values affected the habitat assessment. Param-
eters involved in light transmission and algal photophysiology, as well as Fw, were varied by ±50% for the year 
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2014, which was a year with a typical amount of ice algal habitat. In two 
additional treatments, the algal layer was moved from 0.05 m to (a) 1 m above 
the ice-water interface to simulate the addition of algae in the interior ice 
and (b) the snow-ice interface. No bottom ice algae were simulated in these 
treatments; that is, if the ice was less than 1 m thick, there was no habitat. 
We maintained bottom ice melt as the timing of bloom termination for lack 
of nutrient information, and thus both treatments should be considered rough 
approximations to assess the magnitude of the contributions by interior and 
surface ice to algal habitat.

3.  Results
To provide an overview of the recent patterns in Antarctic ice algal habitat, 
we begin by validating the thermodynamically grown sea ice thickness, an 
essential input to the ice algal habitat assessment. We then describe impor-
tant environmental conditions and their corresponding trends before report-
ing the resulting ice algal habitat on a range of spatial scales: as a circumpolar 
whole, by sector, by latitudinal band, and by 25 km grid cell. Lastly, we detail 
how the assessment responds to different parameterizations.

3.1.  Ice Thickness Validation

Modeled Antarctic sea ice was generally thin, with an annual average of 
0.68 ± 0.10 m during 2004–2019 (circumpolar mean ± standard deviation, 

n = 16 years). Sea ice thicknesses on the dates of the summer minimum and winter maximum ice extent averaged 
0.81 ± 0.07 and 0.62 ± 0.03 m, respectively (n = 16 years). The sea ice thickness model showed no drift over its 
16-year run, but did produce some interannual variability (Figures S2–S4a in Supporting Information S1). These 
simulated thicknesses are similar to the long-term means of the ASPeCt data set, which reported an average of 
0.87 m for all sea ice, including ridges, and 0.62 m for level, undeformed ice (Worby et al., 2008). If we take the 
output of the fifth Coupled Model Intercomparison Project (CMIP5) multi-model ensemble mean and divide the 
1979–2005 mean annual sea ice volume of 7.73 × 10 3 km 3 by the mean annual sea ice extent of 11.50 × 10 6 km 2, 
we arrive at a comparable 0.67 m thickness. However, comparison to a data-assimilating global ice-ocean model 
suggested that sea ice in the CMIP5 ensemble is too thin (Shu et al., 2015), and any model or remote sensing 
estimate of ice thickness remains uncertain.

The seasonal pattern of ice thickness from our idealized model (2004–2019) and from all ASPeCt observations 
(1980–2005) match well (Figure 2). The model simulated a higher frequency of thinner ice than the ASPeCt data 
(Figure 3), which is reasonable given a likely field sampling bias for thicker ice and because we do not account 
for ridging or rafting. In the summer, the frequency distributions of both modeled and observational data are 
shifted toward thicker ice that survives the melt season (Figure 3b). ASPeCt observations were generally distrib-
uted across sectors, and the Indian and Pacific sectors were well sampled in all seasons (Figure S4 in Supporting 
Information S1). The Bellingshausen-Amundsen sector only had winter and spring observations. Summer and 
fall observations in the Ross and Weddell Seas were generally closer to the continent than winter and spring 
observations. Because areas with thick ice were not sampled as frequently from June to November, the seasonal 
cycle captured by the ASPeCt compilation may be biased. Indeed, the Massachusetts Institute of Technology 
general circulation model (MITgcm) simulated a seasonal cycle with a maximum ice thickness in November 
(Holland et al., 2014) in contrast to the end of December or February peak in our model and in the ASPeCt data 
(Figure 2)—although it should be noted that ice thickness estimates from the MITgcm were larger than those 
from the Ice, Cloud, and Land Elevation Satellite in November (Holland et al., 2014).

The idealized model produced thick ice (>1.5 m) in areas of known multiyear ice accumulation in the Weddell 
Sea and between the western Ross Sea and the Amundsen Sea (Figure 1a and Figure S3a in Supporting Informa-
tion S1; Meiners et al., 2012). These areas also tended to have higher interannual variability in sea ice thickness 
(Figure S4a in Supporting Information S1). Regionally, the model overestimated ice thickness in the Ross Sea 
(Figure S5c in Supporting Information S1), which may be attributed to particularly rapid movement of sea ice 
offshore (Comiso et al., 2011; Holland & Kwok, 2012). This movement may increase the relative importance of 

Figure 2.  Yearly cycle of Antarctic sea ice thickness from all ASPeCt 
observations (n = 20,585) and the ice growth model.
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Figure 3.  Frequency distribution of in situ ASPeCt data and modeled ice thicknesses, (a) year-round and (b–e) by season. Note that the sample size, n, refers to the 
number of ASPeCt observations, which can be multiplied by 16 to get the approximate number of matched model estimates (one per year of the model).
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some sea ice dynamics that are not represented in our model; in a study that compared the thermodynamic and 
dynamic forcings of a coupled ocean-sea ice model, the Ross Sea was the only sector where wind stress surpassed 
thermodynamics as the main driver of sea ice extent (Kusahara et al., 2019). It is also possible that the rapid ice 
floe motion in the Ross Sea is not well captured in the Polar Pathfinder product. With the understanding that 
our sea ice model is by definition limited but makes use of newly improved snow depth estimates—which are 
considered one of the biggest limitations to accurately simulating thermodynamic ice growth (Notz, 2012)—we 
now proceed to use our modeled ice thickness as an informative tool to diagnose ice algal habitat.

3.2.  Environmental Inputs

To set the context of the Antarctic sea ice environment, variables with the potential to affect the extent and 
duration of ice algal habitat are presented as averages for June–January (the months for which we ran the habitat 
assessment). The exceptions are the maximum ice extent, date of ice advance, and melt date, which are quantified 
using a single metric that applies for the entire year. Using 2005 as an example year (for comparison with Saenz 
& Arrigo, 2014), sea ice froze starting from the Antarctic landmass and continuing northward, as evidenced in the 
later ice advance dates at lower latitudes (Figure 1f). Air temperatures also showed a latitudinal pattern, with the 
coldest air along the Antarctic continental margins (Figure 1c). In contrast, bottom ice melt dates did not follow 
a latitudinal pattern but were highly patchy (Figure 1d). The mean snow depth was 0.28 ± 0.02 m (n = 16 years) 
but was occasionally ≥0.80 m in winter. Snow depths tended to be more evenly distributed across the Antarctic 
ice pack than ice thicknesses (Figure 1b). Maps of the long-term means and interannual standard deviation of 
environmental inputs during 2004–2019 are presented in Figures S3 and S4 in Supporting Information S1. In 
most regards, the spatial patterns in the long-term means closely resemble those of 2005, with the exception of 
melt date, which has a high interannual variability at many grid cells such that the patchiness visible in 2005 
(Figure 1d) is smoothed out over the time series (Figure S3d in Supporting Information S1).

We only report trends (for environmental variables and ice algal habitat) that are statistically significant. Winter 
sea ice extent in the Antarctic decreased during 2004–2019, although embedded in this trend is an increase and 
then drop off after 2016 (Figure 4a). The circumpolar-averaged air temperature decreased by 0.5°C decade −1 
and the average snow depth decreased by 0.01 m decade −1 (Figures 4b and 4c). While both changes would have 
altered the thermodynamic balance of the sea ice and therefore vertical growth and melt, the effects were too 
small to be statistically distinguished in the average ice thickness, date of ice advance, or melt date, which all 
showed no trend (Figures 4d–4f). At this rate of change, the thinning snow cover may have altered light trans-
mission but likely not ice thickness. Average incident PAR showed a relatively minor decrease of 1.2% over the 
16-year study (Figure 4g). Circumpolar and regional means and trends for environmental inputs are reported in 
Tables S1, S2, and S4 and mapped in Figure S7 in Supporting Information S1. There were often contrasting posi-
tive and negative trends between different regions—or within a single region—that compensate at the circumpo-
lar scale. For example, the northern Ross Sea featured a strong increase in sea ice thickness, while the Ross Sea 
off Oates Land featured a strong thinning (Figure S7c in Supporting Information S1).

3.3.  Ice Algal Habitat

We examined the extent and duration of Antarctic ice algal habitat at several spatial scales. At the circumpo-
lar scale between 2004 and 2019, an average of 92 ± 2 (uncertainty range = 31–100)% of Antarctic sea ice 
experienced at least 7 habitat-days each year, and 81 ± 3 (13–94)% of ice experienced at least 14 habitat-days. 
Average normalized habitat-days for the entire Antarctic was 38.1 ± 2.3 (7–65) d. At a growth rate of 0.22 d −1 
(estimated growth rate at light level 𝐴𝐴 𝐴𝐴𝑘𝑘 =

𝑃𝑃
max

𝛼𝛼
 using the parameters in Table 1), 14 days would allow the starting 

population to grow to over 20 times its starting biomass. There was no trend in habitat-days (km 2 d decade −1) 
summed across the entire ice pack, and the drop in sea ice extent during 2016–2019 did not negatively affect the 
aggregate amount of ice algal habitat. When adjusted for the decreasing maximum ice extent over time, there 
was an increase in normalized habitat-days of 2.6 days during 2004–2019 (Figure 4h, Table S3). As there was no 
change in the circumpolar-averaged dates of the ice algal bloom start (data not shown) or finish (Figure 4f), the 
increase  in normalized habitat-days between 2004 and 2019 suggests that there was an increase in the fraction of 
the sea ice area that was habitable, rather than a lengthening of the ice algal season. Lastly, there was no corre-
lation between the circumpolar number of normalized habitat-days with the SOI, ASL, or IOD at any time scale 
or when lagged. The circumpolar number of normalized habitat-days was positively correlated with the 3-month 
spring index for the SAM (R = 0.55), but not the annual or the 8-month growing season index.
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Figure 4.  Trends in ice algal habitat assessment inputs and outputs: average circumpolar (a) maximum ice extent, (b) air temperature, (c) snow depth, (d) ice thickness, 
(e) date of ice advance as day of the year (DOY), (f) bottom ice melt date, (g) downwelling incident photosynthetically active radiation (PAR), and (h) normalized 
habitat-days. (b–d) and (g) are averaged June–January, while (a, e, f, and h) are annual metrics. Standard deviations around the circumpolar means are reported in 
Table S4. Trend lines indicate a significant trend based on a Mann-Kendall Trend test with an accompanying Theil-Sen slope estimate.
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Geographic sectors fell into two statistically distinct groups with respect to their number of normalized habitat-days 
each year. The Ross, Bellingshausen-Amundsen, and Weddell sectors averaged 35.3 ± 5.9 (6–72), 33.5 ± 5.6 
(7–48), and 36.1 ± 2.3 (5–60) days, respectively, while the Indian and Pacific sectors averaged 44.0 ± 4.4 (7–76) 
and 45.5 ± 4.8 (10–68) days, respectively (n = 16 years, ANOVA and Tukey's test, Figure 5a, Table S3). On the 
regional scale, the only correlation between a climate mode and normalized habitat-days was with the spring SAM 
in the Indian sector (R = 0.67). The Ross and Weddell sectors exhibited positive trends in normalized habitat-days 
during 2004–2019, while the Bellingshausen-Amundsen was the only sector with a negative trend. In the regional 
multiple linear regression, 28.9% of the variation in normalized habitat-days was explained by snow depth, 19.2% 
by melt date, 17.2% by ice thickness, 9.3% by incident light, and 7.4% by the date of ice advance (Table S5).

When divided into 5° latitudinal bands, sea ice showed a distinct nonlinear decrease in the number of normalized 
habitat-days when moving from north to south (Figure 5b). Latitudinal bands, especially the northernmost and the 
southernmost, also had fairly high interannual variability, with standard deviations of normalized habitat-days up 
to 8.7 days (n = 16 years). As with sectors, there were mixed temporal trends in normalized habitat-days between 
bands, with the fastest increase of 13.4 days decade −1 observed in the 55°–60°S band. There was also a slower 
increase of 4.8 days decade −1 in the 75°–80°S band and a decrease of 1.4 days decade −1 in the 65°–70°S band.

However, ice algal habitat in a given year clearly varied on a much finer spatial scale than that captured by binning 
data into sectors or latitudinal bands (Figure 1h). Indeed, the standard deviations of normalized habitat-days 
for grid cells within a single sector spanned 9–26 days (uncertainty range = 3–35; n = 3,500–11,800 grid cells 
depending on the sector). The location of highly habitable ice varied greatly between years, such that the long-
term mean of normalized habitat-days was more spatially smooth (Figure S3g in Supporting Information S1). 
Trends in normalized habitat-days were also patchy and frequently contrasted within the same sector (Figure 6b). 
Therefore, we examined the patterns in and drivers of ice algal habitat on a 25 km scale, the highest resolution of 
our input data. A visual comparison clearly indicates that, when compared to the various input factors, the spatial 
pattern of normalized habitat-days (Figure 1g) most closely resembles that of the sea ice melt date (Figure 1d) in 
2005. Moreover, the spatial pattern of the trends in normalized habitat-days between 2004 and 2019 were strik-
ingly similar to those in the sea ice melt date (Figure 6 and Figure S7 in Supporting Information S1). A multiple 
linear regression combining all 16 years of individual grid cell data showed that 45% of the spatial and interan-
nual variation in normalized habitat-days was explained by melt date (Table S5). Other factors—daylength, SOI, 
incident light, snow depth, ice thickness, and the date of ice advance—each explained ≤3%. When grid cell by 
grid cell regressions were run for each year, melt date and snow depth both became larger contributors to the R 2 
over time, while ice thickness became a smaller contributor (Figure 7, Table S5).

3.4.  Sensitivity Analyses

In general, the sensitivity analyses revealed that the habitat assessment was not sensitive to most parameters. 
All parameter changes of ±50% resulted in a <50% change in circumpolar habitat-days (Table S6). In fact, the 
response in normalized habitat-days was typically much less (<28%), except when the diffuse attenuation coef-
ficient of dry snow was decreased by 50%, causing a 48.2% increase in normalized habitat-days. Moving the 

Figure 5.  Time series of normalized habitat-days calculated for (a) sectors and (b) latitudinal bands (see Figure 1h). Black lines indicate a significant trend based on a 
Mann-Kendall Trend test with an accompanying Theil-Sen slope estimate.
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algal layer to 1 m from the ice-water interface to simulate interior ice had minimal effect (4.2% increase), while 
moving it to the snow-ice interface increased normalized habitat-days by 41.4%. Knowing that bottom ice melt 
date explained the most variation in normalized-habitat days, we examined the sensitivity analysis for Fw, which 
directly contributed to the thermodynamic balance of the sea ice: a 50% increase in Fw resulted in ice that was 
0.16 m thinner and melt dates that were 11.8 days earlier on average for a 4.8 days (13.5%) decrease in circum-
polar normalized habitat-days (Table S6). A 50% decrease in Fw caused 0.08 m thicker ice on average, 11.1 days 
later melt dates on average, and a 2.4 days (6.9%) increase in normalized habitat-days.

4.  Discussion
The major goal of this study was to investigate the recent status, trends, and variability in Antarctic bottom 
ice algal habitat and its environmental drivers. Below, we discuss our findings that: (a) Antarctic sea ice is 

widely habitable and is more so than Arctic sea ice; (b) potential habitat did 
not respond to the 2016–2019 drop in sea ice extent and instead increased 
in concentration within grid cells; and (c) high spatial variability in poten-
tial habitat reveals that bottom ice melt date is the dominant environmental 
driver. We conclude by leveraging our understanding of the factors currently 
controlling Antarctic ice algal habitat to predict its future sensitivity to envi-
ronmental change.

4.1.  Status of Ice Algal Habitat

With 92% of Antarctic sea ice reaching 7 habitat-days and 81% reaching 14 
habitat-days on average, the vast majority of the ice pack transmitted enough 
light to support bottom ice algal communities. Field data show that most 
ice algal blooms last at least 14 days, although data from sea ice camps are 
largely restricted to a few sites on landfast sea ice (Archer et al., 1996; Arrigo 
et al., 1995; Cota & Sullivan, 1990; Grossi et al., 1987; Grotti et al., 2005; 
Guglielmo et al., 2000; Lazzara et al., 2007).

Compared to the Arctic Ocean, the Antarctic has a larger extent, propor-
tion, and duration of ice algal habitat. In the Arctic, only 48%–66% of sea 
ice reached ∼7 habitat-days during 1985–2018 and, on average, Antarctic 
sea ice supports algal growth for twice as long as Arctic sea ice (38.1 vs. 
18.6 normalized habitat-days; Lim et al., 2022). One likely reason for this 
difference is that the Arctic has a greater amount of thick, multiyear ice 
(Kwok, 2018) that attenuates incoming light; the mean ice thickness in the 

Figure 6.  Maps of (a) trends in bottom ice melt date and (b) trends in normalized habitat-days during 2004–2019. Only grid 
cells with significant trends, based on a Mann-Kendall Trend test with an accompanying Theil-Sen slope estimate, are shown.

Figure 7.  Time series of the relative importance of various input factors, 
reported as their estimated contribution to the R 2 in annual grid cell by grid 
cell multiple linear regressions. Bottom ice melt date and the date of ice 
advance are annual metrics, while the remainder are June–January means.
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Arctic is more than twice that of the Antarctic (Lim et al., 2022). Sea ice also exists at higher latitudes in the 
Arctic, resulting in an average incident PAR over Arctic sea ice that is 19% lower than that of the Antarctic (Lim 
et al., 2022). However, model estimates of annual primary production in Antarctic (23.7–35.7 Tg C year −1) and 
Arctic (10–36 Tg C year −1) sea ice are comparable because the per-meter rates of production are higher in the 
Arctic (Arrigo, 2017; Arrigo et al., 1997; Deal et al., 2011; Dupont, 2012; Jin et al., 2012; Saenz & Arrigo, 2014).

To understand the positive correlation between the spring SAM and normalized habitat-days—which was signif-
icant only on the circumpolar scale and in the Indian sector—we investigated associations between the SAM and 
other environmental variables. There was a positive correlation between the spring SAM and melt date on the 
circumpolar scale (R = 0.61) and in the Indian sector (R = 0.55). During a positive SAM, surface air temperatures 
south of 60°S are generally lower than normal, aside from some warming over the Antarctic Peninsula (Fogt & 
Marshall, 2020; Marshall, 2007). These lower temperatures are likely to delay the bottom ice melt and thus extend 
the ice algal season. A negative SAM usually features the opposite conditions—higher surface air temperatures 
(Fogt & Marshall, 2020; Marshall, 2007) and earlier melt dates—which lead to fewer habitat-days.

In this study, we focus on ice algal habitat in the bottom 0.05 m of the sea ice in spring because it is easier to repre-
sent within the limitations of remote sensing and model data. We cannot know when algal habitat in the upper ice 
would end without including nutrient concentrations and an algal pool in our model. Our chosen approach almost 
certainly underestimates ice algal habitat in the Antarctic, as surface and internal communities account for 29.2% 
and 31.4%, respectively, of integrated Chla in compiled ice core data (Meiners et al., 2012). Spatially, surface 
flooding, which promotes surface communities, may affect 5%–55% of sea ice, with the highest percentage of 
flooded ice in the spring (Saenz & Arrigo, 2014); in the Weddell Sea, a region with thick, heavy snow, field meas-
urements in winter found that 13%–30% of the sea ice was flooded (Wadhams et al., 1987). Wet snow or snow-ice 
also transmits more light than dry snow, though this may be offset by light absorption by algae (Perovich, 2002). 
Our sensitivity analyses indicated that potential habitat could increase substantially if we included the snow-ice 
surface; less so with internal layers. The increased habitat in the upper sea ice may not scale directly to primary 
production (Saenz & Arrigo, 2014) and ecosystem impacts, however, and the dominant ice algal dynamics are 
likely captured here.

4.2.  Trends

With regards to temporal trends, air temperatures over Antarctic sea ice decreased by 0.5°C decade −1 during our 
study period, but the direct impacts of this decrease were minimal, as cooler temperatures did not translate to 
changes in ice thickness, melt date, or the date of ice advance. The 1.2% decrease (2004–2019) in incident PAR 
(400–700 nm) over sea ice from the atmospheric radiative transfer model forced by observations and reanalysis 
data is in approximate agreement with a 0.2% decrease (1987–2017) in 200–5,000 nm incident irradiance from 
the International Satellite Cloud Climatology Project, likely driven by changes in cloud cover (Pinkerton & 
Hayward, 2021). Perhaps the most notable trend in the input data was a decrease in average snow depth (Shen 
et al., 2022) during the ice algal season which, although small compared to the interannual variability, declined at 
a rate (−0.01 m decade −1) more than three times that of Arctic snow depth (−0.003 m decade −1; Lim et al., 2022). 
To our knowledge, there are no other medium- to long-term products of snow depth on Antarctic sea ice for 
comparison (Webster et al., 2018). Given the course (2.5°) resolution of the atmospheric input data (including air 
temperatures) and our use of circumpolar averages, these temporal trends in the Antarctic sea ice environment 
are meant as overviews of highly variable system, aspects of which have been documented by many other studies 
(e.g., Hobbs et al., 2016; Matear et al., 2015).

Normalized habitat-days increased between 2004 and 2019 because a greater proportion of each grid cell 
became potential habitat for ice algae. The closest comparison for our habitat estimates is that of Pinkerton and 
Hayward (2021), who calibrated a time series of remotely sensed incident light and sea ice concentration with 
outputs from the baseline run of a sea ice ecosystem model (Saenz & Arrigo, 2014) to estimate trends in ice 
algal production (1987–2017). They found that circumpolar primary production increased over time. Although 
we did not estimate production in our study, the increases in ice algal habitat could support increased production. 
In addition, because potential habitat became more “concentrated” in smaller areas of ice, the 2016–2019 drop 
in sea ice extent did not negatively impact total ice algal habitat. Thinning snow, which was the most important 
input variable in the regional regression, is one likely explanation for sea ice grid cells becoming more habitable. 
A smaller mean snow depth at any given grid cell allows a higher proportion of sea ice within the cell to transmit 
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enough light to support ice algal growth. An additional factor may be bottom ice melt date, which played a large 
role in controlling the small-scale variability in normalized habitat-days as discussed below.

4.3.  Spatial Variability

More striking than the temporal trends found in this 16-year study was the horizontal patchiness of Antarctic ice 
algal habitat (Figures 1g and 6b). Other studies have recognized that ice algal habitat is highly variable on scales 
ranging from meters to hundreds of kilometers (reviewed in Cimoli et al., 2017), and our habitat assessment 
provides further evidence that this is the case across the Antarctic at the 25 km scale. Increases in ice algal habitat 
were strongest in the eastern Ross Sea and offshore in the Weddell Sea (Figure 6b), which loosely correspond to 
the areas with the largest increases in ice algal production in Pinkerton and Hayward (2021): East Antarctica, the 
western Ross Sea, and the Weddell Sea. Importantly, the spatial patterns in ice algal habitat were not consistent 
within geographic sectors nor latitudinal bands, and aggregating data over these large areas is likely to mask key 
information about ice algal habitat and its environmental drivers. For example, our regression analysis indicated 
that snow depth explained the most variation (28.9%) in regional habitat and was fairly closely followed by melt 
date (19.2%) and ice thickness (17.2%). However, the grid cell by grid cell regression told a different story, where 
melt date explained by far the most variation in habitat (45.0%). Further considering how the map of melt date 
strongly resembles the map of normalized habitat-days—and the same with the trends in each—we propose that 
melt date was the most important driver of ice algal habitat variability in 2004–2019. Although localized shifts to 
earlier and later melt dates balanced at the circumpolar scale to produce no overall trend, they could still notably 
affect the circumpolar habitat estimates because the relationship between changes in melt date and changes in ice 
algal habitat is not 1:1. That is, a 1 day shift in melt date does not necessarily equate to a 1 day increase/decrease 
in normalized habitat-days. In the Fw sensitivity analysis, a 1 day shift in the circumpolar-averaged melt date 
resulted in a 0.2–0.4 days change in normalized habitat-days because the effects of changes in melt date  depend 
on complex interactions with all other environmental factors. For example, a shift to an earlier melt date only 
results in fewer habitat-days if enough light is transmitted through the snow and ice to support algal growth, 
such that a potential bloom is terminated early. Increasing Fw shifts melt dates earlier but also thins the sea ice, 
with the latter potentially dampening the effect of the former on net algal habitat. Thus, when we characterized 
Antarctic ice algal habitat at a smaller scale, rather than using sectors or latitudinal bands, we saw that melt date 
has a distinct, sizable, and nonlinear effect on circumpolar habitat estimates.

4.4.  Implications

We can use the recent record of Antarctic ice algal habitat and its response to environmental conditions to predict 
its vulnerability to future changes. Due to the relatively short satellite record of snow depth, it is too early to 
disentangle the effects of climate change on Antarctic ice algal habitat from patterns due to climate oscillations 
and normal interannual variability. Studies estimate that 34–40 years of data are necessary to distinguish climate 
change trends in phytoplankton Chla and primary production in the Southern Ocean (Del Castillo et al., 2019; 
Henson et al., 2010), and it is likely that the time series for ice algal habitat would need to be of a similar length. 
However, both the interannual and spatial variability of ice algal habitat during 2004–2019 demonstrate that 
Antarctic ice algal habitat has been and will likely continue to be quite sensitive to changes in snow depth and 
atmospheric conditions. In particular, bottom ice melt date as the dominant (and an increasingly important) factor 
explaining spatial patterns in habitat suggests that the Antarctic ice algae are likely to be affected by the condi-
tions controlling vertical sea ice growth, especially air temperature, ocean heat flux, and sea ice motion (driven 
by winds and surface currents). CMIP6 predicted that air temperatures over the Southern Ocean will increase 
between 1.5°C and 6°C by 2100, depending on the latitude and forcing scenario (Bracegirdle et al., 2020), and 
this magnitude of warming is likely to have a more observable impact on ice algal habitat than the net −0.8°C 
change in our study. Ocean heat fluxes are also likely to increase, given many projections of increased Southern 
Ocean heat content (Cheng et al., 2022). Either change could feasibly cause bottom sea ice to melt earlier and 
terminate ice algal blooms sooner each year. Given its increasing importance during our 16 years study, snow 
depth may be a second influential factor on future ice algal habitat. CMIP6 predicted increased precipitation 
rates over the Southern Ocean by 2100 (Bracegirdle et al., 2020), although snow accumulation on sea ice also 
depends on the duration and timing of the sea ice season. A thicker snow cover would attenuate more light, likely 
decreasing ice algal habitat.
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Data Availability Statement
The habitat assessment code and output are available at https://doi.org/10.25740/jn797cv3253 (Lim et al., 2023). 
The citations for data used as inputs (e.g., snow depth, atmospheric reanalysis, sea ice motion, climate indices) 
are included directly in the text and references.
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